Sardar Bhagwan Singh PG Institute of Biomedical Sciences & Research Balawala, Dehradun

School of Pharmaceutical Sciences & Technology

Assignment-5 B. Pharm 6th Semester

Subject: Biopharmaceutics and Pharmacokinetics (BP-604T)

Short questions: (each carry 2 marks)

- Q1: What are the two main parameters that are adjusted during development of multiple dosage regimen?
- Q2: Write the minimum and maximum steady state concentration in IV injection.
- Q3: Define loading dose.
- Q4: Define maintenance dose.
- Q5: How to calculate loading dose in IV and EV route.
- Q6: Name the two compartments according to Multicompartment model.
- Q7: Differentiate between one compartment and Multicompartment model.
- Q8: Name the two processes in two compartment model explaining biexponential decline after IV injection.
- Q9: Write the equation used to resolve individual components in two compartment model using method of residuals.
- Q10: Construct the biexponential plasma concentration time curve by method of residuals for two compartment IV bolus injection.

Attempt all questions: (1×10=10)

Q1:	will transform a single dose equation into a multiple-dosing equation.
Q2: Dost ratio, r	=
Q3: In IV route,	<u> </u>
Q4:	is affected by the elimination half-life of the drug and the dosing interval.
05	is equal to the loading dose divided by the maintenance dose.

Write the equation for the following pharmacokinetic parameters for two compartment IV bolus:

Q6: AUC

Q7: Apparent volume of distribution of central compartment

08: K₁₂

Q9: Total systemic clearance

Q10: Equation for finding out various pharmacokinetic parameters for two compartment IV bolus using urinary excretion data.